682

We wish to thank Hardman and Holden Ltd. for
drawing our attention to this problem, for supplying
the material examined and for financial assistence,
Mr D. Hardcastle for helpful correspondence, Prof.
H. Lipson for his continued interest and Prof. F. C.
Williams for providing the facilities of the Manchester
University computing laboratory. One of us (R.A.L.8.)
acknowledges with thanks a maintenance grant from
the Department of Scientific and Industrial Research.

References

CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.

CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 757.

Darwin, C. G. (1922). Phil. Mag. 43, 800.

Davies, D. R. & PASTERNAK, R. A. (1956). Acta Cryst.
9, 334.

Dowirz, J. D. (1956a). Acta Cryst. 9, 579.

Duxirz, J. D. (1956b). J. Amer. Chem. Soc. 78, 878.

FarqQuar, M. C. M. & Lipsox, H. (1946). Proc. Phys. Soc.
58, 200.

Acta Cryst. (1962). 15, 682

THE CRYSTAL AND MOLECULAR STRUCTURE OF THIOUREA DIOXIDE

Forsyts, J. B. & WELLs, M. (1959). Acta Cryst. 12, 412.

Foster, F. (1958). Thesis for the degree of Ph.D.,
University of Manchester.

Hanson, A. W., LresoN, H. & TAYLOR, C. A. (1953). Proc.
Roy. Soc. A, 218, 371.

Haxson, A. W,, Tavror, C. A. & Lipson, H. (1952).
Nature, Lond. 169, 1086.

HarpcasTLE, D. (1959). Private communication.

HarpcasTLE, D. (1961). Private communication.

JELLINEK, F. (1958). Acta Cryst. 11, 677.

KuxcaUR, N. R. & TRUTER, M. R. (1958a). J. Chem. Soc.,
p. 2551.

KuxcHUR, N. R. & TrRUTER, M. R. (1958b). J. Chem. Soc.,
p. 3478.

TruTER, M. R. (1955). J. Chem. Soc., p. 3064.

TruTER, M. R. (1960). J. Chem. Soc., p. 997.

Vavenax, P. & DoNoEUE, J. (1952). Acta Cryst. 5, 530.

WiLson, A. J. C. (1950). Acta Cryst. 3, 258.

Woorrson, M. M. (1957). Acta Cryst. 10, 116.

Woorrson, M. M. (1958). Acta Cryst. 11, 4,

Compton Incoherent Scattering Functions for Ions of the First Transition Series
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(Recetved 18 August 1961)

Compton incoherent scattering functions have been found for the transition elements Sc through
Cu using the complete Waller—Hartree theory including the effects of the non-sphericity of the
charge distributions. These calculations were based on analytic Hartree-Fock wave functions
recently determined by Watson but restricted to 3d» configurations. Results are given for three
states of ionization (+1, +2, and +3) for each of the elements; the configurations 3d» differ from
the ground state only for the +1 ions other than Cr and Cu. These values are also compared with
the few available earlier calculations for these ions and the role of the neglected 4s electrons is

discussed.

Introduction

It is now generally accepted that in the absence of
a theory for crystalline scattering the use of Hartree—
Fock self-consistent field (SCF) wave functions in the
Waller & Hartree (1929) free atom expression yields
the best available incoherent scattering intensities.
These have now been calculated for a large number
of neutral atoms and ions (see Appendix I for a
bibliography) and some of the general results may be
summarized as follows:

(I) The exchange terms in the Waller—Hartree

* Part of the work of this author was supported by the
Ordnance Materials Research Office, Watertown, Massachu-
setts, U.S.A.

equation must be included as these may be as large
as the total intensity itself; the earlier James &
Brindley (1931) values, which were based on SCF
wave functions without exchange, are in error by at
least the magnitude of the exchange terms. This error
increases with Z, the atomic number.

(2) The properly calculated incoherent scattering
intensities are in good agreement (except at very small
scattering angles) with the few experimental deter-
minations that have been made to date (Keating &
Vineyard, 1956; Freeman, 1959, b, ¢, and 1960a).
While this means that free atom caleulations may be
used without loss of accuracy (despite all the dif-
ferences between an atom in free space and one in
a solid), it is also a disappointing result since it means
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that information about the solid cannot be readily
gotten from such experiments.

(3) For non-spherical charge distributions the depen-
dence of the scattered intensity on the orientation of
the scattering may be included in a straightforward
way (Freeman, 1959d) and practical formulae, ap-
plicable to the case of scattering from randomly
distributed free atoms, are available. These non-
spherical effects are much smaller than the exchange
contribution.

There have, until recently, been few Hartree-Fock
self-consistent field wave functions available for the
elements we are considering, but of these none
(except for Cu* (Hartree & Hartree, 1936)) was an
exact Hartree-Fock treatment. The calculations of
Hartree (1954, 1956), were based in part on interpola-
tion for the wave functions of the inner electrons in
Mn+2 and in part on the use of the argon core
(152252263523 p%) wave functions from this calculation
in the calculation of the outer electron (3d, 4s) wave
functions for Ti+, V+2, Mn+ and Mn. Wood & Pratt
(1957) carried out a modified Hartree—Fock calculation
for atomic iron by using Slater’s (1951) average
exchange potential to simplify the variational problem.

In fact, the V+2 calculation of Worsley (1958) was
the first really accurate Hartree~Fock calculation for
the case of an unfilled d shell in that no use was
made of interpolations or other approximations and
the numerical solution carried out to full self-con-
sistency. More recently, Piper (1959) has calculated
complete, accurate Hartree—-Fock wave functions for
Fe+3, Mn*2 and Mn+4 and Mayers* (1959) has done
the same for some iron series atoms. Simultaneously,
one of us (Watson, 1959, 1960) has calculated Hartree—
Fock wave functions for the entire iron group series
including atoms in many stages of ionization. These

* D.F.Mayers (unpublished) has just obtained some
highly accurate numerical Hartree-Fock results for atoms up
to Zn.
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calculations used analytic wave functions, i.e., a linear
combination of products of exponentials and powers
of r, with coefficients determined by a Roothaan (1951)
SCF procedure. The electronic configurations were
limited to the 3d” type only (e.g., neutral iron with
a 3d®4s? ground state is replaced by a 3d8 configura-
tion). See Watson (1959) for more details about the
wave functions and the accuracy of these calculations.

In this paper we are reporting the results of calcula-
tions of the incoherent scattering functions for the
first transition series (Sc to Cu). These calculations
are based on analytic Hartree-Fock wave functions
recently determined by Watson (1959 and 1960) but
restricted to 3d» configurations, i.e., no 4s electrons
included. This restriction was imposed by the limited
capacity of the computer (MIT’s Whirlwind I). Results
are given for three states of ionization (+1, +2, +3)
for each of the elements Sc to Cu; the configurations
3d» differ from the ground state only for the +1 ions
other than Cr and Cu. These values are also compared
with earlier data for some of these ions (Freeman,
19600).

Formulas and method of calculation

The Waller—-Hartree equation for the incoherent scat-
tering intensity in electron units, e.u., without the
Breit-Dirac (1926) correction factor (»'/v)3 is

Ie.u. =Z—Zi]fii|2—2l_2:‘|fij[2=z_f > (1)
where ) =
fir = y(r) exp [ik.rly;(r)do . 2)

The w; are the one-electron H-F atomic wave func-
tions and k denotes the scattering vector. By using
an appropriate expansion for the exponential, fi; may
be written as a sum of radial integrals involving the
spherical Bessel functions with coefficients which are
integrals of the product of three spherical harmonics.
Details of the procedure may be found in an earlier

Table 1. Coefficients of the contribution to F from the 3d electrons for the ions
listed along with their appropriate configuration and ground state

For a given ion the contributions is a sum of all the terms in that row, i.e., a sum of products of coefficients (given here)
and the appropriate radial integrals (not given)

Ion Configuration  f%;  f1 34(2) f3q,304) fis,sa  [fosea 3,50 fop,sa(l) fip,3a(0) f3p, 3a(3) [f3p,2a(3)
Sct2, Tit3 3dl, 2D 1 2 & 2 2 2 252 252 gr8 g18
Sct, Ti+?, V9 3, °F 2 % i 4 4 ¢ o m W W8
Tit, V42, Crt3 3d3, ¢4F 3 15 L 6 6 6 38 78 Lise Lis4
V+, Crt2, Mn+3 3d4, 3D 4 2 38 8 8 8 1008 1008 iz 1542
Cr*, Mn*2, Fets 3d5, 68 5 30 30 10 10 10 12 12 18 18
Mnt, Fet?, Cot? 3d¢, 5D 6 %7_90_ %1. 12 12 12 e 1812 _21'2%8_ 21%658
Fet, Co*?, Nit3 3d7, F 7 435 57 14 14 14 174 s 2680 2646
Cot, Nit2, Cut? 3d8, 3F 8 59 =8 16 16 16 2016 2016 3024 3024
Nit, Cut? 34, 2D 9 580 1009 18 18 18 2268 268 3402 3402
Cu*t 3dw, 18 10 200 1200 20 20 20 24 24 36 36
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paper (Freeman, 1959a) as may be a description of the
numerical methods and an explanation of the notation
(Freeman, 1959c).

For the ions discussed in this paper, the formulas
for the contribution to %, from the (in general)
non-spherical shell of d electrons, are given in Table 1
for the appropriate configuration and ground state
term value (Freeman, 1959a). To this contribution
(i.e., the sum of all terms in a given row) must be
added that of the core electrons (1s22s22p%3s23p8) which
are common to all the atoms,

F (core) =2f1,+ 2f3, + 6f3,+ 23, + 63,
+4(f35, 05+ ;ls, sst+f gs, 35)
+12(f%,, op+f 5, 2pt+f 35, 2p+f s, ap+f 3, sp+J3s, 3p)
+12(f3, 2p(2) + 13, 3p(2) +3p, 3p(0) + 2135, 55(2)) . (3)
The terms fi;, with ¢<4j are the exchange terms
which arise from application of the Pauli exclusion

principle; the summation in equation (1) is over
wave functions 7, j having the same spin.

Results and discussion

The results of the calculations are summarized in
Table 2 which gives Ie.u. as a function of sin 6/4 in

COMPTON INCOHERENT SCATTERING FUNCTIONS FOR IONS

A-1 units. In previous work values of fi; were also
given in order to facilitate interpolation for atoms for
which no such computations were available. Since we
have obtained values for the entire series no such
interpolations are necessary and in order to conserve
space the f;; integrals have not been tabulated. (They
are available to interested persons from the authors.)
The exchange terms amount to 50% of Ieyu. at low
sin §/4 in agreement with earlier results, and so
cannot be neglected.

In Fig. 1 we show the calculated results for Fe+ (3d7),
Fe+2 (3d¢), Fe+3 (3d°) and also Fe 3d64s2 taken from the
earlier work of Freeman (196056). We see that the
results form a ‘family’ of non-intersecting curves and,
at each sin 0/4, show a roughly equal spacing between
them. Let us see what some consequences of this result
might be. First, it implies that one can readily inter-
polate (or extrapolate) available data to obtain in-
coherent scattering functions for ions for which such
data is not known. Secondly, it offers the possibility
of determining, from Compton scattering experiments,
the number of 3d electrons in the (say) transition
metals, whereas (and for a similar reason) such a
determination based on measurements of the atomic
scattering factor as suggested by Weiss & DeMarco

Table 2. X-ray incoherent scattering functions for the transition elements Sc through Cu

sin 6/ Ser Sc+2 Sct3 Tit

Ti+2 Ti+3 v+ V42 Vv+3 Cr+
0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00
0-05 0-52 0-35 0-22 0-50 0-35 0-27 0-49 0-34 0-26 0-46
0-10 1-74 1-26 1-01 172 1-32 1-01 1-67 125 100 1-62
0-20 4-33 3-78 3-21 456 3-81 3-25 4-56 3-81 3-24 450
0-30 7-00 6:16 543 7-08 624 5-56 713 6-31 5-60 711
0-40 8-99 8-08 7-25 9-17 828 749 9-30 842 7-64 9-35
0-50 10-52 9-57 8-67 10-83 9-89 9-08 1107 1014 9-29 11-23
0-60 11-66 10-68 9-75 1210 11-14 10-21 12:46 11-51 1061 12:74
0-70 1253 11-54 10-59 13-07 12-09 11-14 13-54 12-58 11-63 1393
0-90 13-89 12:89 1190 14:50 13:51 1253 1511 1411 13-14 1566
1-10 15-00 14-00 12:99 15-64 1463 13-64 1627 15-28 14-29 16-90
sin 64 Cr+2 Cr+3 Mn* Mn*+? Mn+3 Fet Fe+? Fet3 Cot Co+?
0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00
0-05 0-33 0-26 0-45 0-32 0-25 0-44 0-32 0-25 0-43 0-31
0-10 1-23 0-99 1-60 1-20 0-97 157 1-19 0-94 1-54 117
0-20 3-79 3-23 4-54 3-74 3-21 4-53 3-74 3-15 4-51 3-72
0-30 6-33 564 7-21 6-31 5-65 725 638 562 7-28 6-40
0-40 852 775 9-50 855 -82 9-60 8-69 7-85 9-68 877
0-50 10-33 9-51 1145 10-46 9-66 11-63 10-67 9-76 11-77 10-82
0-60 11-80 10-93 13-07 12:04 1119 1333 12:34 11-38 13-56 12:58
0-70 1298 1206 14-36 13-32 1242 1472 1371 1272 15:05 14-04
0-90 14-67 1371 16-22 15:19 14-24 16-75 1573 14-71 17-24 16-22
1-10 15:90 14-92 17-53 1651 15-52 18-14 1713 1611 18:74 1772

sin 6/4 Co+3 Nit Ni+ Ni+3 Cu+ Cu+? Cu+3

0-00 0-00 0-00 0-00 0-00 0-00 0-00 0-00

0-05 0-25 0-41 0-31 0-24 0-40 0-30 0-24

0-10 0-94 1-50 114 0-92 145 112 0-90

0-20 3-15 4-47 3-69 3-13 4-42 3-66 3-09

0-30 565 7-28 6-40 566 7-26 6-39 564

0-40 7-95 9-72 882 8-01 9-78 885 8-03

0-50 9-95 11-86 10-93 10-07 11-92 11-02 1016

0-60 11-65 1373 12:76 11-85 13-85 12:92 12:01

0-70 13-07 1530 1431 1337 15-51 1455 1365

0-90 1522 17-67 16-67 15-68 18-06 17-06 16-09

110 16:71 19-29 18-29 17-29 19-82 18-81 17-82
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Fig. 1. Incoherent scattering intensity, Z —&F, for Fet(3d),
Fet2(3d8), Fe+3(3d5) of this work and the Fe(3d®, 4s?) result
of Freeman (1960b).

(1958) is mot possible (Watson & Freeman, 1961).
This is so because the atomic scattering factors at
low sin 6/ (the measurements are most accurate at
the first Bragg reflection and so are done there) is
surprisingly insensitive to the number of 3d electrons
in the atom (Watson & Freeman, 1961). In fact, the
form factor is actually smaller for an atom with eight
(3d) electrons than for one with seven (3d) electrons.
If these results are applicable to atoms in the solid,
it means that an X-ray measurement cannot un-
ambiguously determine the 3d configuration of iron
in the range 3d® to 345, and would be fairly insensitive
down to 3d4. With reasonable experimental error one
could not determine by X.ray measurements whether
iron had from five to eight electrons in 3d-like orbits
and could just, outside of error, resolve a 3d* con-
figuration from this range.

Incoherent scattering functions have been calculated
previously only for a few ions of the transition series
(Freeman, 1959c, 1960b). For Cu* we find almost
exact agreement between the results given in Table 2
and those reported earlier (Freeman, 1959c). This is
an encouraging result for it means that even though
there are small differences between the methods that
were used to determine the wave functions (analytic

18

16— “

0 02 0-4 06 0-8 10 12
sin 6/4 (K
Fig. 2. Incoherent scattering intensity for Mn*? (this work),

solid curve, compared with the earlier result of Freeman
(1960b), dashed curve.

16

14— 2

12— /

Z-F 8 /

I A I N O S Y o
0 02 04 06 08 10 142

sin@/ A4 (A7)

Fig. 3. Incoherent scattering intensity for Ti+ (this work),
solid curve, compared with the earlier result of Freeman
(1960b), dashed curve.
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16

12— 4

100~ 4

A O Y S N SO O
0 0z 04 06 08 10 12

sin 0/ (K

Fig. 4. Incoherent scattering intensity for V+2 (this work),
solid curve, compared with earlier result of Freeman (1960d),
dashed curve.

versus numerical) the results are insensitive to these.
Further it provides us with evidence that both calcula-
tions were carried out fairly accurately.

In Figs. 2, 3, and 4, we show a comparison of the
present results for Ti+, V+2, and Mn+*2 with those
reported earlier (Freeman, 1960b). We see that over
most of the range of sin §/4 the results for Mn+2 agree
very well; only at very large angles do the results
diverge. Several factors may be responsible for this but
most probably the main reason lies in the fact that
the earlier results were based on Hartree’s (1954)
wave functions which were obtained from an in-
complete self-consistent field treatment and it is the
outer region in sin /4 which would reflect the dif-
ferences in wave function density near the nucleus.
The results for Ti+ and V+2 show greater differences
but this is not surprising since the wave functions
used in the earlier calculation (Freeman, 1960b) were
based on Hartree’s (1954) core wave functions for
Mn+2 and 3d functions calculated with these as the
core potential (Hartree, 1956), and so are even more
approximate than those for Mn+2,

The calculations have one obvious shortcoming—
they do not include the contribution of the 4s electrons.
Let us now see how serious this is and how to go about
overcoming this deficiency. First we must observe that
it was previously found (Watson & Freeman, 1961)
that the presence of 4s electrons had no effect on either
the distribution of the other electrons or their scat-
tering factors. Hence we expect that we can separate
out the effect of the 4s electrons from the incoherent

COMPTON INCOHERENT SCATTERING FUNCTIONS FOR IONS

scattering contribution of the other electrons. If from
the earlier Fe (3d%4s2) results (Freeman, 19605) we
compute the contribution to &% from all terms
(If:|2 and |fi;]2) involving the 4s electrons we find that
like the 4s form factor this contribution is negligible
except at very low sin §/4 and that the contribution
(2—F) to the intensity equals 2-00 (4 0-08) except
at sin §/A=0-1. (It is, of course, zero at sin 6/41=0).
This means that, over most of the range in angle,
one could estimate I for say a 3d»—24s2 atom by using
the I given in Table 2 for the 3d»—2 state and adding 2
as the 4s contribution or, much better still, adding the
square of the 4s form factor. (See Freeman & Watson
(1961) for a tabulation of these for the neutral iron
series atoms.) If one follows this procedure and adds
the 4s contribution to the intensity listed in Table 2
for Fe+2 one does not reproduce the earlier results
(Freeman, 1960b). This is not surprising in view of
the Slater (1951) approximation of exchange which
Wood & Pratt (1957) used to calculate the earlier
wave functions. The effect of this approximation is
discussed more fully by Watson & Freeman (1960).
The possibility of following a procedure such as the
one just discussed for treating the 4s contribution
means that the results given in Table 2 may be
applied without large errors to atomic configurations

Table 3. Incoherent scattering intensities based
on Hartree—Fock wave functions

For the ground state configuration only the unfilled
outer shell is given

Atom | Atom
or Ground Refer- | or Ground  Refer-
ion state ence I} ion state ence
Lit 152, 18 F(e) | Al 3p, 2P F(b)
Li 2s, 28 F(e) ' Sitd 2p8, 1S F(d)
Be 252, 18 F(e) i Sitd 3s, 28 F(d)
B 2p, 2P, M-B Si 3p?, 3P F(d)
C 208,48 K-V 1 CI- 35,18 Fle)
N 2p%, 48 F@) | K+  3ps 1S Fle)
N- 2p4, 3P F(d) i Cat*+ 3p%, 18 F(e)
Ot 2p, 2P F(d) Cat  3p8, 4s, 28 Fle)
0O+ 2p2, 3P F(d) | Ca  3p5 452, 1S  Fle)
O+ 2p8, 4S F(d) : Tit  3d3, 4F F(f)
o} 9p4, 8P F(d) | V2 3d3,4F F(f)
o 2p5,2P  F(d) '  Mn*® 3d5,6S F(f)
F 205, 2P F(d) Mn*+ 3dS, 5D F(f)
F- 208,18 F(d) Mn  3d5, 452,88 F(f)
Ne 2p8, 18 F(c) Cut 341,18 F(c)
Nat 2p8, 1S Fle) ) Cu 3d19, 45,28  F(e)
Na 3s, 28  F(e) '  Zn*® 3d0,18 Flc)
Al+S 2p%, 1S F(e) Ge 4s2%, 4p%, 3P F(d)
Al+ 3s2, 1§ Fle)

F(b) = Freeman (1959b)

F(c) = Freeman (1959c)

F(d) = Freeman (1959d)

F(e) = Freeman (1960a)

F(f) = Freeman (1960d)

K-V = Keating & Vineyard (1956)

M-B = Milberg & Brailsford (1958)
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other than 3d» for which the calculations were carried
out.

Comparison with experiment

There have been very few experimental determinations
of the incoherent scattering intensities (for C, Al, KCl,
CaFs and NaCl) but these have not included any of
the atoms considered in this paper. While the agree-
ment between theory and experiment has been very
good for these cases, it would be valuable to have
accurate measurements for the transition elements,
both for their own inherent interest and to compare
with theory in order to test its validity. While the
experiments are not easy to perform we hope that
they will soon be undertaken.

APPENDIX A

We give in Table 3 a listing of the atoms and ions
for which accurate incoherent scattering functions are
now known in order to provide a convenient summary
of the data available to date. The results of the present
work are not included.

We are pleased to thank Mrs Anna Hansen &
Mrs Athena Harvey for their help with the computa-
tions.
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Some Calculations using the Ewald Transformation

By R. A. CowLEY
Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England

(Received 21 September 1961)

The calculation of the energy, dispersion relations of the normal modes, and elastic constants of a
crystal requires a knowledge of the long-range Coulomb interactions between the atorns. The summa-
tions involved can be expressed in dimensionless form and converted to a rapidly convergent form
by using the Ewald transformation. Machine programs have been written to calculate the Madelung
coefficients, Coulomb coefficients, and the expansions of the Coulomb coefficients, (which are
required to calculate the elastic constants), for crystals which have at least orthorhombic symmetry.
Both the Madelung coefficients, and the Coulomb coefficients for wave-vectors parallel to the
ferro-electric axis, have been calculated for barium titanate, using the atomic positions both of the
paraelectric phase and of the ferroelectric phase at 20 °C.

The total energy of a non-metallic crystal is usually
divided into two parts—one from the Coulomb inter-
action of point charges, dipoles and higher multipole
moments representing the long-range interactions
between the atoms in the crystal, and the other from

the short-range or repulsive forces. Although the
potential for the interaction of point charges and
multipoles is readily obtained from classical electro-
statics, the short-range interaction is essentially of a
quantum-mechanical nature, and cannot usually be



